Polymorphic Uncertain Structural Analysis: Challenges in Data‐Driven Inelasticity
نویسندگان
چکیده
This contribution addresses polymorphic uncertainty quantification within structural analysis of reinforced concrete structures composed heterogeneous and reinforcement (e.g. steel bars or carbon fibres). The macroscopic material behaviour is strongly dependent on the mesoscopic heterogeneities, which are considered by multiscale modelling. characterized representative volume elements (RVE) transition scales carried out utilizing numerical homogenization methods. concept data-driven computational mechanics enables model free finite element analyses directly based data sets, overcoming necessity assumptions in approach mainly consists assigning a stress-strain state, leads to minimum an objective function fulfils equilibrium as well compatibility constraints every integration point. Inelastic taken into account through definition local sets containing only set states consistent with respect past history . realistic modelling requires consideration uncertainty. Generalized models utilized order take variability, imprecision, inaccuracy incompleteness combining aleatoric epistemic models. In this contribution, computationally efficient for uncertain information reduction measurements presented. Due generalization, applicable various aleatoric, identification admissible taking inelastic realized energy parametrization extended data. An selection these presented challenges inelasticity, particularly use case structures, pointed out.
منابع مشابه
Modeling inelasticity and failure in gold nanowires
We present numerical simulations of gold nanowires under tensile loading at various strain rates and wire sizes at room temperature. The simulations were performed using molecular dynamics modeling the gold nanowires using various forms of the embedded-atom method, and concentrated on investigating the yield and fracture properties of the nanowires. It is clearly demonstrated that the accurate ...
متن کاملStructural inference for uncertain networks
In the study of networked systems such as biological, technological, and social networks the available data are often uncertain. Rather than knowing the structure of a network exactly, we know the connections between nodes only with a certain probability. In this paper we develop methods for the analysis of such uncertain data, focusing particularly on the problem of community detection. We giv...
متن کاملAn Adaptive Integration Scheme in Computational Inelasticity
In this paper, an adaptive approach based on a time discontinuous Galerkin method (dG) is proposed. For large time steps and in a linear non-autonomous case, it reduces to the asymptotically second-order accurate Lobatto IIIC type implicit Runge-Kutta method, which is equal to the Padé-(0,2) approximation of the exponential function. In the asymptotic range it will result in the asymptotically ...
متن کاملRecognition and learning with polymorphic structural components
We address the problem of describing recognizing and learning generic free form objects in real world scenes The appearance based system rep resents objects in a graph form and uses weak structure and evidence accu mulation to implicitly encode object models in a learned decision tree after the method developed by Bischof and Caelli Pattern Recognition pp The decision tree is used to classify s...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings in applied mathematics & mechanics
سال: 2023
ISSN: ['1617-7061']
DOI: https://doi.org/10.1002/pamm.202200023